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The objective of this article is to explain a new technique for determining the maximum load-bearing capability
of a "bolted joint" subjected to "in-plane" external loading. The uniqueness of this technique lies in overcoming
the present absence of a suitable stress/strain framework while still working conservatively within proper MIL-
HDBK restrictions. This is accomplished by the (not unreasonable) hypothesis that "load" is actually distributed
in proportion to available "bearing area," as opposed to "shear area," since this would appear to be a more
valid assumption when aluminum members are joined by steel or titanium fasteners that are designed to be
"bearing critical." In this article, aluminum structures are principally used for example only and do not serve
as a restriction. The consequence of the bearing stress/strain ratio that is derived is that a given bolt group can
be shown to have increased ultimate load and moment capability over the classical solution, which assumes a
maximum capability when the bearing stress on the worst loaded fastener has reached /br ultimate.

Introduction

T HE major portion of this article lies in the construction
of 13 specific figures in the form of viewgraphs. The

motivation for doing this is to provide both the teacher and
students, in a strength of materials and structures design course,
an effective "teaching aid" about the nontrite problems that
must be considered in designing safe ultimate loads on light
structures such as, e.g., aircraft assembly components, when
decisions must be made as to how they will be fastened to-
gether.

It is hoped that this "a picture is worth a thousand words"
approach will both stimulate an in-depth discussion and cri-
tique about the principles involved, thereby developing a more
thorough understanding of them, and provide an alternative
approach that may be found to be of enough interest and
controversy to warrant further verification by experimenta-
tion.

It is also hoped that by further examination of this ap-
proach, an improved standard of design for bolted joints will
evolve.

In the interests of maintaining good structural integrity,
responsible design engineers, in the pursuit of developing
good "margins of safety" that guarantee this integrity, will
often err on the side of caution to ensure that it is maintained.
Consequently, for the multitude of different component parts
that are required to be bolted together for aircraft subassem-
blies, e.g., many engineers are taught that the traditional
"elastic" approach is the best to use when designing the place-
ment, or the geometry of the "array," of such fasteners (bolts).
This traditional approach says that applied loads are always
distributed in proportion to "fastener shear area" and the
distance from the "e.g." of the fastener array.1

The real quarrel with this approach is that it can often be
too conservative when a re-evaluation by a "plasticity anal-
ysis" can show that the margins of safety so derived are larger
than necessary. This is especially unfortunate when not only
costly redesign configurations are then called for, but when
the final design is adopted it is less efficient or functional than
the design that was scrapped.
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Initiation of the Procedure
In the viewgraphs that follow, Fig. 1 raises two specific

questions concerning the validity of the traditional approach.
How valid is it, and why change it if it works so well? Here,
it is important for the reader to consider the fact that alu-
minum alloy members are often joined by both steel and
titanium fasteners that are specifically designed to be bearing
critical. Consequently, Fig. 1 is displayed first for the purpose
of focusing our attention as insightfully as possible on the
problem and then for considering whether bearing area is a
more valid assumption to make, as opposed to shear area, in
determining the actual proportionality that load should be
distributed.

Understanding the relevance of Fig. 1, Fig. 2 is designed
to not only make the overall objective of this article clear,
the determination of what might be considered the real max-
imum load-bearing capability of a bolted joint, but to make
the reader understand the critical problem standing in the way
of achieving the objective, the absence of a suitable MIL-
HDBK reference (for aluminum alloy products) upon which
to build a bearing stress/strain analysis, and the proposed
solution for overcoming this difficulty (making use of the fact

The Classical Solution for Determining Load Distribution
on Bolted Joints

For all bolted joints, many of us have been taught, in the traditional elastic
approach, that "applied" loads are always distributed in proportion to "fastener
shear area" and the distance from the "centre of gravity" of the fastener array.

Question 1

Is this a valid proposition?

Answer

Yes - We build excellent aeroplanes, bridges, and skyscrapers by using it.

Question 2

If this proposition works so well, why change it?

Answer
The hypothesis that load is actually distributed in proportion to available
"bearing area" (as opposed to "shear area") would appear to be a more valid
assumption when aluminum alloy members are joined by steel or titanium fasteners
which are designed to be "bearing critical".

Fig. 1 Critical questions and answers.
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Objective
To develop a technique for determining the maximum load bearing
capability of a "Bolted Joint" subjected to "in-plane" external loads.

Probiem in Achieving Objective

Absence of a suitable framework of Stress / Strain diagrams for
"bearings" in MIL - HDBK 5E (for Aluminum Alloy Products) to support
development of technique.

Proposed Solution of Problem

A) Given that for a typical aluminum alloy such as 7075-T6,

which implies a 10:1 ratio for tension
-strain at F =o> 1 %

-strain at Ffu =^=1

(Ref: MIL - HDBK 5E, Figs. 3 7 4 1 6 (n),(o),(p))

We will assume that this same ratio (10:1) is a good approximation
for "bearing".

B) Using (A) as a fundamental premise, to then construct a mathematical
system for determining maximum load bearing capability of a "Bolted Joint".
This process is referred to as "Ripple" (to be described).

Fig. 2 Objective and proposed solution.

Approach (For each fastener)
Since 0.67 Fbru< Fbry for most engineering materials in use then if,
for the most heavily loaded fastener, we establish a "cut-off" at design
limit load of:

0.67 x Ultimate Load
So that:

Fbr Applied >• Fbry

Consequences
This means a bolt group (which is designed to be bearing critical)
can be shown to have:

1. Increased Applied Load Capability

2. Increased Moment Capability

Fbru

Fbr,

Fig. 3 Approach and consequences.

that the general ratio of (Ft ultimate:/'1, yield) implies a (10:1)
ratio for "tension" for typical aluminum alloy products, and
thus, would appear to be an appropriate ratio for "bearing"
ultimate and bearing yield also.

Approach and Consequences
Since it is always the case that 0.67(Fbr„) is always strictly

less than Fbrv for most engineering materials in use, then the
"integrity" of our bearing area approach seems to be well-
maintained when we deliberately establish a "cut-off" at de-
sign limit load of 0.67 x ultimate load, so that Fbr applied
will always be strictly less than Fbrv, which makes the concept
of "plastic" behavior legitimate.

Figure 3 amplifies this approach, giving us the resulting
consequence that bolt groups that have been designed to be
bearing critical will have both 1) increased applied load ca-
pability and 2) increased moment capability.

This "increase" is pictorially represented by the triangle
"area" characterized by the intersections of the lines labeled
elastic, plastic, and the diagonal line terminating at Fbru. In
fact, the diagram of Fig. 3 is especially important since it is
only just the area below the "diagonal line" that is ever con-
sidered in the traditional elastic approach of bolt group anal-
ysis (the "upper triangle area," which depicts the earlier in-
crease, is ignored).

Hypothesized Bearing Stress/Bearing
Strain Relationship

Figure 4 portrays the essence of the "new" approach by
suggesting that the stress/strain ratio might best be expressed
as

^yie.d /^ultimate = 1/10

where, by virtue of the four definitions of: modulus of elas-
ticity E, strain yield (FbrvIE), strain ultimate (10 x strain
yield), and the measure of "strain" itself (% elongation/nom-
inal hole diameter), with hole elongation set at 2% gauge
length, we can now construct a legitimate framework of stress/
strain diagrams analogous, e.g., to those found in MIL-HDBK
5E [Figs. 3.7.4.1.6 (n), (o), and (p) (Ref. 2)].

In fact, the pictorial representation of Fig. 4 appears to
resolve the problem of achieving our objective, as stated in

ASSUMED ACTUAL BEARING CURVE

Fbr.ult

Fbr,yield

*% STRA.N W5X) ultimate

in/in

DEF 1 E = Slope of Straight Line Portion of Bearing Stress /
Bearing Strain Relationship
(Modulus of Elasticity of Material)

DEF 2 eyield

DEF3 e

DEF 4 STRAIN = Percenta9e of Elongation
Nominal Hole Diameter

STRESS-STRAIN RATIO
Suggestion

p yield

"ultimata

1

76"

Fig. 4 Stress/strain relationship.
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We initialize this process by the following simplifying assumptions: The Concept of a "Ripple" (an Example)

® The fasteners are infinitely rigid. That is, fastener bearing, shear and
bending deflections can be ignored.

(2) Axial, shear and bending deflections in the supporting and reacting
plates at the joint are small and can be ignored.

(3) When joint displacement and/or rotation occurs, all radial lines
remain straight.

(3) When external loads are applied, all deflections at the joint are due to
local bearing deflections at the fasteners.

eyjQk, -a. 5% of nominal hole diameter "d" (i.e. e^M = 0.05d)
© giving "ultimate strain at failure" 50% of d (i.e. eu|t= 10eyield=0.5d)

Edge distance conditions are resolved by imposing a "cut-off" value
® of "fastener load allowable" calculated from the "shear-out" capability

the material between the hole and the edge of the material.

Fig. 5 Necessary assumptions.

Fig. 2 (an absence of a suitable framework of stress/strain
diagrams for bearing in MIL-HDBK 5E) by supplying such
a diagram for hypothetical consideration.

In support of the previous hypothesis, Fig. 5 lays out a set
of six simplifying assumptions that are designed to eliminate
excess computational complexities, which, if admitted at this
stage, would likely unnecessarily cloud the essence of our
theory, which itself is more important to convey as clearly
and as succinctly as possible. These assumptions are as fol-
lows:

1) The fasteners are infinitely rigid and that, therefore,
fastener bearing and shear and bending deflections can be
ignored.

2) Axial shear and bending deflections in the supporting
and reacting plates at the joint are small and can be ignored.

3) When joint displacement and/or rotation occurs, all ra-
dial lines remain straight.

4) When external loads are applied, all deflections at the
joint are due to local bearing deflection at the fastener.

5) ^yieid is approximately equal to 5% of nominal hole di-
ameter "d" (i.e., eyield = 0.05d) giving "ultimate strain at
failure" 50% of d (i.e., eult = 10eyield - 0.5d).

6) Edge distance conditions are resolved by imposing a
cutoff value of "fastener load allowable" calculated from the
"shear-out" capability of the material between the hole and
the edge of the material.

Theoretical Concept of Ripple for Measuring Bolt
Group Equilibrium or Failure

In keeping with the desire to convey as simplistic an under-
standing of the theory as possible, Figs. 6-10 consider the
"transition stages" that two simple flat plates bolted together
would theoretically "pass through," in a real time mode, for
some moving (flight) condition, when a load of "p" pounds
is applied in-plane externally to an initial fastener of an array
of fasteners (bolts).

For real clarity, we make very simplifying assumptions again.
Here we consider a flat plate, as described in Fig. 6, to be of
uniform density, of constant thickness, of having a bearing
ultimate stress Fbrlt, and a bearing yield stress Fbrv of/? pounds,
of being fastened together by a horizontal row of four fas-
teners (all of common hole diameter, pitch, and having no
"short-edge distance" problem), and bolted to another plate
of similar dimensions that is held rigid, but whose bearing
yield stress is considerably greater than that of the "first"
plate. We also assume that the fasteners have unit-bearing
area, and thus "stress" is equated to "pounds."

Figure 7 simply directs our attention to the beginning of
the "ripple process," the initial stage, where the four fasteners
are displayed with no internal bolt group reaction having yet

Consider a flat plate:
1. of uniform density
2. of constant thickness
3. having a bearing ultimate stress (Fbru) and a

bearing lead stress (Fbry) of p Ibs
4. that by means of a horizontal row of four (4) fasteners which:

a) are of common hole diameter
b) are of common pitch
c) have no "short edge distance" problem

is bolted to another plate:

i) of similar physical dimensions
ii) that is held rigid
iii) whose bearing yield stress (Fbru) is "considerably" greater than

the bearing stress (Fbry) of the first plate

Note: For convenience we will assume that fasteners
have unit bearing area and thus 'stress" will be
equated to Ibs.

Fig. 6 Conceptual considerations.

Initial State

Four Fasteners - 0 Load

Fig. 7 Initial state.

A load of P Ibs is applied to the first (I) fastener which causes the:

First Ripple State (As Illustrated)
Iplbs
3
A

Iplbs
sp

- Fbr = p Ibs

3
C.G.

_ 2. p Ibs
-Plbs

With: Moment balance occuring because

(1x -lp) + (2 xl-p) - (3 X-2-p) = (4_+!.-_6.)p = o
3 3 3 3 3 3

Load balance occuring because

-(p) + C±p) + aP) +4_ + J_- 2_)p
3 3 3

But: Fastener two (2) must now 'shed'— p Ibs onto fasteners three (3)
and four (4) to avoid plasticity.

Fig. 8 First ripple state.

A load of — p Ibs is "shed" from fastener two (2) to the remaining fasteners
three (3) and four (4) which causes the

Second Ripple State (As Illustrated)

fp
- Fbry = P Ibs

^^^ CG

-̂In

With: Moment balance occuring because

Load balance occuring because

-CLp)
3

_ _ _ . .
3 3 3 3 3

Fig. 9 Second ripple state.
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If we now combine the Initial State, First Ripple State, and Second Ripple State, by linear
addition a Resultant Equilibrium State is achieved:

Initial State

First Ripple State

Second Ripple State

Resultant Equilibrium State

Fig. 10 Overview of combined ripple states.

taken place because of the absence of any in-plane external
loading.

However, as illustrated in Fig. 8, when a load of p pounds
is applied "vertically" and in-plane to the first fastener of the
four-fastener array (which is horizontal to this "applied" load),
a natural condition of both moment and load balancing begins
to occur on all fasteners, starting with the first fastener, since
it received the load /?, which was initially applied to it, in
order to restore (if possible) equilibrium.

Here, we note momentary failure in the "second" fastener
since its load-bearing capability has exceeded its bearing yield
capability by one-third. If fastener number two was to stand
alone (i.e., fasteners three and four did not exist), it must
surely rupture or else cause the first plate to begin to rotate
counterclockwise about the second plate with the "center of
rotation" being shifted to the right of the c.g.'s position, which
lies midway between the first two fasteners, to create an equal
and opposite "shedding" of load.

However, what will actually occur is that fastener number
two attempts to shed its excess load first "onto" fasteners
three and four, the ripple process, before the bolted structure
ruptures.

This reaction triggers the second ripple process, as depicted
in Fig. 9, with a similar moment and load rebalancing, as illus-
trated, to restore equilibrium. Here, fastener three is seen to
absorb a load excess of one-third p pounds (which increases its
load-bearing capacity from one-third p pounds to two-thirds p
pounds), while diminishing the load-bearing capacity of the fourth
fastener by the same amount. This again is the result of an equal
and opposite reaction caused by a "shifted" center of rotation.

It is this second ripple that restores a state of equilibrium
for, as depicted in Fig. 10, if we now combine the initial state
(Fig. 7), the first ripple state (Fig. 8), and the second ripple
state (Fig. 9) by linear addition of all "load propagations"
separately on each fastener, a load balance of

or, more simply

has occurred. This is significant for two reasons. None of the
fasteners has gone plastic, and a plastic condition did mo-
mentarily occur but was "rippled" out.

Geometry of a Bearing Stress/Bearing
Strain Relationship

In order to understand the computational aspects that are
required to evaluate the load-bearing capabilities of fasteners
under the proposed plasticity analysis, we refer to the ge-
ometry of Fig. 11, which portrays the "four fastener" example
described earlier, and where we define the following:

u(n = a plasticity reference point associated with fas-
tener one

pl2 = the pitch between fasteners one and two
w(P = the measure of stress the second fastener had

to sustain in the plastic zone when it exceeded
yield stress by one-third p pounds during the
"first ripple"

pl3 - the pitch between fasteners one and three
M n = the measure of stress the third fastener had to

sustain when an increase of one-third p pounds
was added to it during the "second ripple," but
which still kept the total load that the third
fastener had to sustain within the elastic zone

x = one-tenth "gauge length" analogizing a bearing
stress (10:1) ratio with that found in tension (Ft
ultimate: F, yield) for typical aluminum products
gauge length minus x

P + [(4/3)P -

+ [(-2/3)P +

(2/3)P]

9x
(u - y)/9 = similar triangle proportionality to u - y
u
y

= 0 Lm

ultimate stress
yield stress
line intercept with straight line plastic equation
center of rotation
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Carefully examining Fig. 11, it may be seen that the "slope"
of the "plastic equation" is (w()1 - k[ty)/Lm, while the slope
of the "elastic equation" is this constant again multiplied by
the "transition factor" 9y/(u - y). This is because the pro-
portionality factor (u - y)/9 when multiplied by 9y/(u - y)
equals the yield y itself.

Figure 12 portrays the plastic and the elastic slope measures
m(P) and m(E) respectively, with the sliding transition factor
Kx by which fasteners move from the "plastic line" to the
"elastic line" or back again, depending upon the ripple effect
causing fastener bearing loads to shift from one state of stress
to another.

Figure 12 also clearly shows that an elastic state of stress may
be determined as a point on the elastic equation y = ra* [where
m = m(E) = (u()l - klty)ILm and * = Lm - pl3], while a
plastic state of stress may be determined as a point on the plastic
(line intercept) equation y = mx + b [where we define m =
m(P) = m(E)Kx, with the transition factor Kx = 9y/(u - y)
and jc and b defined as Lm — pl2 and klty, respectively].

The "solution of «()2," as illustrated, shows the plastic state
point value of the second fastener after the first ripple, while
the "solution of w13" shows the elastic state point value of the
third fastener after the second ripple.

R
E
S
s JL

(u -y) . 9x

13

Lm

Figure 13 is actually a stand-alone figure, separate from the
previous 12 figures. Its intent is to generate personal per-
spectives about the behavior of materials themselves as op-
posed to the fasteners that hold them together.

The questions to be asked are those concerning "strain hard-
ening" and "permanent set" when external loads are either
applied or relaxed. Here, a hypothetical example is given to
illustrate such a condition on a group of elements that could
occur when an external load is applied, then relaxed.

Of particular relevance for serious discussion is the exten-
sion of our two-dimensional "line equation" procedure to a
three-dimensional structure, as it appears relatively easy when
placed in the context of three-dimensional vectors and em-
ploying vector geometry to get the correct "resultants."

Consequently, our line approach would appear to be a very
simplistic and, possibly, a quite accurate way to evaluate in-
ternal loadings of point elements in a three-dimensional struc-
ture.

Discussion
While our own investigations with the materials in common

use today appear to bear out the reasonableness of this new
approach, it is essential to recognize the necessity that continued
research into the feasibility of adopting this approach to bolt
group analysis should take place. In so doing, a thorough in-
vestigation of the hypothesis should take place. That is, the
hypothesis that the stress/strain ratio is best expressed as

^yield'^ultirr = 1/10

STRAIN-

Fig. 11 Geometry of four fastener example.

(as a result of the assumption that ey[c[d = FbrvIE and 10 x
e yidd = ^inmate) an^ which is made by virtue of the fact that
for most materials in common use today, it is also approxi-
mately true that

rtyie,d/rtu,timate = 1/10

In particular, the assumption of bearing yield strain being
set at 0.05d with ultimate bearing strain set at 0.5J should be

Observation of Geometry Used

Elastic "Slope" m(E) Plastic "Slope" m(P)

\
Transition Factor

9y
=

Form of Elastic Equation
(y = mx)

Solution of u

Form of Plastic Equation
(y=mx+b)

-13
Given: m = m(E)

x = Lm-p13

Then: y = m(E)(Lm-p13)
= U13

Solution of u

Given: m = m(P)
x=Lm-p
b=kuy

Then: y=m(E)(Lm-p12)-f kyy

'02

'12

Note : Lm = Center of Rotation
Fig. 12 Elastic/plastic slope relationship.
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What about "Elements" (not fasteners)?

Hypothesis of how individual (Elements) ————————————
subjected to "Strain Hardening" settle into permanent set when
applied load is relaxed. ___________

Elastic/Plastic Curve (Due to applied load with
infinitesmal elements in place as fasteners 1,2
and 3 above yield but below ultimate )

Permanent Set Curve (No Applied Load)-—^_

© ©

-Y ultimate

©

Fig. 13 Strain hardening and permanent set.

verified as exhaustively as possible. This seems totally rea-
sonable, e.g., if we are also to include new materials in our
designs as they enter the market.

We should also ask ourselves some seemingly not too un-
reasonable questions such as the following.

1) Is a tensile yield strain of 0.01 possibly a little high?
Leading to the next question:

2) Is a measure between 0.001-0.002 perhaps more rea-
sonable for a tensile yield strain?

3) Would a measure between 0.1-0.2 in gauge length not
possibly be a better expectation for ultimate strain in tension?

4) Could a 10:1 (ultimate:yield) ratio for bearing be inac-
curate because, in fact, bearing is a combination of tension,
compression, and shear behavior about the circumference of
a fastener's hole and that, therefore, basing our 10:1 ratio on
tension behavior, as we have done, may be erroneous?

5) Because the yield offset criteria between net tension and
bearing differ, to what extent then, if any, would this affect
our hypothesized 10:1 ratio?

We ask these questions for the purpose of developing a few
good starting positions upon which to base some exacting
investigations. This is important because irrespective of the
research and development programs that we have engaged
in, where such types of questions have been examined in some
depth, our findings have to be seriously verified by others.

This is necessary, for the question we are now asking other
researchers to confirm is the following:

6) Since 0.67 x F&rultimate is strictly less than F6ryield for
most engineering materials in use, if we establish a cutoff, at
design limit load, of 0.67 x ultimate load so that Fbr applied
never exceeds F6rvieid, have we derived an optimally safe
"maximum" loading approach on fastener arrays for most
engineering materials in common use today?

Conclusions
Given the fact that subassemblies of aircraft, e.g., can have

varying degrees of loads placed on them by ever-shifting loads

being continuously exerted upon them by changes in "flight
conditions" (changes in attitude), what actually takes place
in a bolt group is that the most heavily loaded fastener "sheds"
that portion of its load that it cannot sustain to the next
heaviest loaded fastener, etc.

This shedding process will continue throughout the bolt
group until one of three events happens. The bolt group
will achieve equilibrium; the bolt group will be knocked
out of equilibrium because of a sudden change in loading,
thus requiring that a new state of equilibrium be estab-
lished; or the bolt group will rupture since the load being
exerted is beyond the capacity of the fasteners to bear. In
this paper, we refer to the notion of "load shedding" as
"load rippling," which we feel is an apt description of the
internal processes which any bolt group undergoes in con-
tinuous load-bearing adjustment to maintain a state of equi-
librium.
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